Flagellated bacterial motility in polymer solutions.
نویسندگان
چکیده
It is widely believed that the swimming speed, v, of many flagellated bacteria is a nonmonotonic function of the concentration, c, of high-molecular-weight linear polymers in aqueous solution, showing peaked v(c) curves. Pores in the polymer solution were suggested as the explanation. Quantifying this picture led to a theory that predicted peaked v(c) curves. Using high-throughput methods for characterizing motility, we measured v and the angular frequency of cell body rotation, Ω, of motile Escherichia coli as a function of polymer concentration in polyvinylpyrrolidone (PVP) and Ficoll solutions of different molecular weights. We find that nonmonotonic v(c) curves are typically due to low-molecular-weight impurities. After purification by dialysis, the measured v(c) and Ω(c) relations for all but the highest-molecular-weight PVP can be described in detail by Newtonian hydrodynamics. There is clear evidence for non-Newtonian effects in the highest-molecular-weight PVP solution. Calculations suggest that this is due to the fast-rotating flagella seeing a lower viscosity than the cell body, so that flagella can be seen as nano-rheometers for probing the non-Newtonian behavior of high polymer solutions on a molecular scale.
منابع مشابه
Examination of bacterial flagellation by dark-field microscopy.
A method is described for visualizing unstained bacterial flagella by dark-field light microscopy. Since individual filaments can be seen, a genus such as Salmonella, which is peritrichously flagellated, can readily be distinguished from a polarly flagellated genus such as Pseudomonas. Polarly flagellated bacteria generally swim much faster than peritrichously flagellated bacteria, and turn by ...
متن کاملBacterial flagellar motility on hydrated rough surfaces controlled by aqueous film thickness and connectedness
Recent studies have shown that rates of bacterial dispersion in soils are controlled by hydration conditions that define size and connectivity of the retained aqueous phase. Despite the ecological implications of such constraints, microscale observations of this phenomenon remain scarce. Here, we quantified aqueous film characteristics and bacterial flagellated motility in response to systemati...
متن کاملEffect of viscosity on bacterial motility.
The behavior of a number of motile flagellated bacteria toward viscosity characteristics of their fluid environments was observed. All showed an increase in velocity (micrometers per second) in more viscous solutions. Velocity reached a maximum at a characteristic value, however, and thereafter decreased with higher viscosities. Peritrichously flagellated bacteria had maximum velocities at high...
متن کاملControl of bacterial motility by environmental factors in polarly flagellated and peritrichous bacteria isolated from Lake Baikal.
Despite numerous studies on bacterial motility, little is known about the regulation of this process by environmental factors in natural isolates. In this study we investigated the control of bacterial motility in response to environmental parameters in two strains isolated from the natural habitat of Lake Baikal. Morphological characterization, carbon source utilization, fermentation analysis,...
متن کاملListeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion.
Flagellar structures contribute to the virulence of multiple gastrointestinal pathogens either as the effectors of motility, as adhesins, or as a secretion apparatus for virulence factors. Listeria monocytogenes is a food-borne, gram-positive pathogen that uses flagella to increase the efficiency of epithelial cell invasion (A. Bigot, H. Pagniez, E. Botton, C. Frehel, I. Dubail, C. Jacquet, A. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 50 شماره
صفحات -
تاریخ انتشار 2014